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Cholesteric pitch of rigid and semi-flexible chiral liquid crystals 
by ROBERT A. PELCOVITS 

The Martin Fisher School of Physics, Brandeis University, Waltham. 
Massachusetts 02254, U.S.A. and Department of Physics, Brown University, 

Providence, R1 02912, U.S.A.? 

(Receiued I S  January 1996; in Jinal form 8 April 1996; accepted 23 April 1996) 

We calculate using mean field theory, the cholesteric pitch in systems composed of chiral 
molecules, which we model as 'corkscrews'. We consider both the rigid and semi-flexible 
limits. Our result for the cholesteric pitch depends on the intrinsic molecular pitch length as 
well as the concentration of molecules, but does not depend on the flexibility of the molecule. 

1. Introduction 
Cholesteric liquid crystals are formed from chiral 

molecules which differ from their mirror images. Simple 
mechanical models for chiral molecules include threaded 
rods, twisted biaxial bodies, and corkscrews (which are 
threaded rods with a hollow core). The cholesteric pitch 
in a system of threaded rods was considered by Straley 
[ l ]  using Onsager theory [2], and extended by Odijk 
[3] to the semi-flexible case using scaling arguments 
[4]. For rigid threaded rods of length L, diameter A (not 
including the threads), thread depth A ,  ( A  << L) and 
number density pL, Straley found the following 
expression for the pitch length p. 

p 2: ( A @ , ) - ' .  (1) 
Surprisingly, there is no dependence in this expression 

on the intrinsic pitch of the molecule, i.e. the distance 
between the neighbouring threads. One would expect 
that a system of coarsely threaded rods has a shorter 
cholesteric pitch length, as compared with a system of 
finely threaded rods, because in the former case neigh- 
bouring rods will pack together with a larger angle 
between their long axes. Finely threaded rods can mesh 
their threads together and remain nearly parallel. We 
would expect then to have a cholesteric pitch length 
inversely proportional to the molecular pitch length. 
Odijk's result for the semi-flexible threaded molecule 
also has no dependence on the intrinsic molecular pitch. 

Evans [S] was the first to consider the effect of the 
molecular pitch on the cholesteric pitch using a density 
functional theory applied to twisted rigid biaxial ellip- 
soids. He derived numerically the ratio of the chiral 
pitch to the molecular pitch in terms of the semi-axis 
lengths of the hard body and in the limit of small twist. 
For a fixed molecular biaxiality Evans found that the 

+Permanent address. 

cholesteric pitch ratio is proportional to the pitch of the 
ellipsoid, and independent of concentration. However, a 
strong dependence on concentration has been observed 
experimentally [6] in cholesteric polymers. The propor- 
tionality of the cholesteric pitch and the molecular pitch 
is physically reasonable in a model of twisted ellipsoids 
which become nonchiral as the pitch of the twist goes 
to zero; for screw-like molecules we expect an inverse 
relationship, because the screw threads get more dense 
as the molecular pitch tends to zero. 

In this paper we return to the model of screw-like 
molecules and calculate the cholesteric pitch within 
Maier-Saupe theory for chiral molecules modelled as 
corkscrews for both the rigid and semi-flexible limits. 
By modelling the chiral molecules as corkscrews and 
using Maier-Saupe theory we can calculate the pitch 
length analytically for the rigid case. We find the choles- 
teric pitch length to be inversely proportional to the 
molecular pitch length, in agreement with the intuitive 
arguments presented above. For strong nematic order 
our Maier-Saupe result can be readily transcribed to an 
Onsager form involving the concentration and molecular 
parameters. It has been hypothesized that semi-flexible 
molecules such as the fd virus are in fact corkscrew-like 
in structure [7]. Our analytic result for the rigid case is 
readily extended to the semi-flexible case using Odijk's 
scaling prescription [4]. We find a dependence of 
the cholesteric pitch on concentration different from 
that found by Odijk, and no dependence on molecular 
flexibility, in disagreement with Odijk's results. 

2. Results 
To calculate the cholesteric pitch we need to evaluate 

the elastic constant K , ,  the coefficient of the term linear 
in the director gradient in the Frank free energy. The 
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362 R. A. Pelcovits 

pitch length is then given by [S] 

2xK2 p = -  
v ’  

where K ,  is the twist elastic constant. We follow the 
approach of Lo and Pelcovits [9] who evaluated elastic 
constants for non-chiral molecules by calculating within 
mean-field theory the free energy of a distorted nematic 
using the Maier-Saupe potential [ 101 (this potential is 
equivalent to Onsager theory for strong nematic order 
where the director angular distribution function becomes 
Gaussian). In the present case we consider a twist 
distortion, and calculate K ,  and K ,  from the free energy 
of distortion. 

1 
2 

-kBTpL In (ZiZ,) = K,q(Gn) + ~ K,q2(Sn)2 + O((6n)‘). 

( 3 )  

Here Z ,  is the partition function of an undistorted 
nematic (with the director parallel to the z direction), 
2 is the partition function of the distorted nematic, and 
6n is the amplitude of the twist nematic distortion, i.e., 
the distorted director field obeys, 

(4) fi(r(s)) = 2 cos O,(r(s)) + 2 sin On(r(s)), 

O,(r(s)) = ( S n )  sin qy(s ) ,  

and 

( 5 )  
for a cholesteric twist along the y axis. The position 
vector r(s) gives the location of a point on the molecule 
located an arc length from one end, s = 0, of the molecule, 
and is measured from a fixed laboratory origin. 
Equation (3) is evaluated in mean-field Maier-Saupe 
theory by writing the partition function for a single 
molecule with local tangent vector 8(s) as 

Z =  dR 98(s )  1 s  
where a is a phenomenological parameter, S is the 
nematic order parameter, and L is the chemical length 
of the molecule. The position vector R specifies the 
location of the end of the molecule parameterized by 
s = 0; the integration over R samples the full spatially 
varying director pattern. The undistorted partition func- 
tion Z ,  is given by equation (6 )  with fi(r(s)) = 4 for all 
values of s. The position vector r(s) is related to 8(s) by 

r(s) = ds’ ii(s’). (7)  L 
Equation (3) is readily evaluated if we introduce a 

primed coordinate system whose origin is at the molecu- 
lar end s = 0, and whose z’ axis is parallel to fi(R), the 
local director at R (i.e. we rotate the coordinate axes by 
an angle fin sin (q - R) about the y axis). I n  the present 
case of chiral molecules we evaluate equation (3)  to 
leading order in ~ J I  to obtain K , ;  we will use the results 
from [4] and [9] for K ,  for rod-like molecules and thus 
obtain the leading dependence of p on the molecular 
chirality. In the primed coordinate system the dot prod- 
uct appearing in equation ( 6 )  is given to first order in 
S n  by 

8(s) - fi(r(s)) = u:(s) + w:(s) [sin q * R cos qy’(s)  

+ cos q - R sin qy’(.s) - sin q - K]6n 

+ o((ch)2). ( 8 )  

Using equations (3)-(8) we then find 

K ,  = JdR 1 ds((~3aSu:(s)u:(s)y’(s)), ( 9 )  

where the expectation value (...) is evaluated in the 
undistorted ensemble specified by the partition function 
Z,. For rod-like molecules (i.e. 8‘ = 4’), K ,  would be 
identically zero. For a corkscrew molecule with pitch 
axis pm = pmfim, wavevector qm = i2n/pm)fi, and radius 
A = d / 2  + A ,  the tangent vector is given by 

ii’ = c, i,,, + e2(8, cos (27cs,/f + $) 

+ fi,, x 8, sin (27cslk + $ ) I %  (10) 

where ii, is a unit vector perpendicular to pm, 

Pm c, = - 

I = pm + 2xA is the arc length of a 
corkscrew, and $ is the phase of the 
to the background nematic field. 

i 12) 

single turn of the 
corkscrew relative 

We evaluate the expectation value in equation (9) by 
integrating over all orientations of pm in the undistorted 
ensemble (using spherical coordinates in the primed 
frame) and integrating over $ (to average over the 
rotation of the corkscrew about its long axis?) with the 
result 

which has the following limits for corkscrews with small 

?The author is indebted to R. Kamien for pointing out the 
importance of averaging over this rotation. 
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and large pitches respectively, 

Kt N LaSp,Pm, Pm << A (14) 

K ,  N LaSp, A, pm >> A. (15) 
The result for K 2  in Onsager [4, 111 and Maier-Saupe 
[ 91 theories (zeroth-order in the molecular pitch) is 

L2 
K2 = ~BTPL 7, (14 )  

and thus the pitch length is given by 

We relate the phenomenological Maier-Saupe para- 
meters to more realistic ones by using the correspond- 
ence between the Maier-Saupe and Onsager theories at 
strong nematic order. In this limit the orientational 
distribution function of the director, f (0) is Gaussian, 
with a width 2kBTj3aSL in Maier -Saupe theory. In the 
Onsager theory of rigid rods the width is ~ /2 (d /L4)~  
[12], where 4 is the volume fraction of polymer. 
Equating these two expressions for the width of the 
Gaussian we can rewrite equations (16) and (17) as 
follows 

n2d2 l2  
p=--- 3p,42 d’- Pm 

Equations (22) and (23) predict that the cholesteric pitch 
for a corkscrew with a large diameter and small molecu- 
lar pitch will be larger than for one with molecular pitch 
large compared with the diameter. 

We now consider the pitch for a solution of long, 
semi-flexible corkscrews using the scaling prescription 
of Odijk [4]. This prescription consists of the replace- 
ments: L+A, p L - + p A ,  where A is the deflection length of 
a nematic polymer, and pA is the number density of 
effective segments of the deflection length. In terms 
of the persistence length P and its associated number 
density pp, we have [4,1l]  

1 = (P1’2dpp)-2/3, (24) 

and 

We find then, 

The pitch p is unchanged by this scaling. 

the following results for p, Kt  and H,: 
Odijk‘s extension of the Straley calculation produced 

PP 5’3, (27) 

(28 1 

p 2: A - 1 p p 4 / 3 d - 5 / 3  

XI _N k, TP2Adp& 

The experimental measurements on poly (y-benzyl 
L-glutamate) solutions by Dupre and Duke [6] show 
power law behaviour for p with an exponent of -1.8, 
whereas the present theory yields an exponent of -2 
and Odijk finds -1.66. Thus both theories show 
approximately the same degree of agreement with experi- 
ment and we cannot confirm the validity of either theory. 
More experimental measurements on a variety of mat- 
erials, both rigid and semi-flexible, would clearly be very 
valuable. 

Finally, we note that our mean-field theory, as all 
other mean-field theories of chiral systems, assumes that 
each molecule is in exactly the same field as every other?. 
In equation (6) we assumed that the interaction strength 
aS is independent of the molecular tangent field ii(s), i.e., 
that the neighbouring molecules creating the mean field 
have rotated along with the molecule we are integrating 
over. In fact, the interaction should vary in strength as 
the tangent vector G(s) moves closer or farther from the 
tangent vectors of neighbouring molecules. Thus, a more 
complete theory (which we will not attempt here) might 
account for this effect with a phenomenological prefactor 
in the interaction strength. 

This work was motivated by suggestions due to 
Professors S. Fraden and R. B. Meyer. The author is 
indebted to them for many helpful discussions, as well 
as their hospitality at Brandeis University where this 
work was carried out. The author also thanks 
Dr R. Kamien for many helpful discussions and sugges- 
tions, as well as an anonymous referee for the ideas 
presented in the final paragraph. 
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